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1 Introduction

1.1 Introduction to the LBNE Project

The Long-Baseline Neutrino Experiment (LBNE) Project team has prepared this Conceptual
Design Report (CDR) which describes a world-class facility to enable a compelling research
program in neutrino physics. The ultimate goal in the operation of the facility and experi-
mental program is to measure fundamental physical parameters, explore physics beyond the
Standard Model and better elucidate the nature of matter and antimatter.

Although the Standard Model of particle physics presents a remarkably accurate description
of the elementary particles and their interactions, it is known that the current model is
incomplete and that a more fundamental underlying theory must exist. Results from the
last decade, revealing that the three known types of neutrinos have nonzero mass, mix with
one another and oscillate between generations, point to physics beyond the Standard Model.
Measuring the mass and other properties of neutrinos is fundamental to understanding the
deeper, underlying theory and will profoundly shape our understanding of the evolution of
the universe.

1.1.1 About this Conceptual Design Report

The LBNE Conceptual Design Report is intended to describe, at a conceptual level, the
scope and design of the experimental and conventional facilities that the LBNE Project
plans to build to address a well-defined set of neutrino-physics measurement objectives. At
this Conceptual Design stage the LBNE Project presents a Reference Design for LBNE and
alternative designs that are still under consideration for particular elements.

The scope includes

e an intense neutrino beam aimed at a far site

e detectors located downstream of the neutrino source

LBNE Conceptual Design Report



1-2 Chapter 1: Introduction

e a massive neutrino detector located at the far site

e construction of conventional facilities at both the near and far sites

The selected near and far sites are Fermi National Accelerator Laboratory (Fermilab), in
Batavia, IL and Sanford Underground Research Facility (SURF), respectively. The latter is
the site of the formerly proposed Deep Underground Science and Engineering Laboratory
(DUSEL) in Lead, South Dakota.

This CDR is organized into six stand-alone volumes, one to describe the overall LBNE
Project and one for each of its component L2 projects:

e Volume 1: The LBNE Project

Volume 2: The Beamline at the Near Site

Volume 3: Detectors at the Near Site

Volume 4: The Liquid Argon Detector at the Far Site

Volume 5: Conventional Facilities at the Near Site

Volume 6: Conventional Facilities at the Far Site

Volume 1 is intended to provide readers of varying backgrounds an introduction to LBNE
and to the following volumes of this CDR. It contains high-level information and refers the
reader to topic-specific volumes and supporting documents, also listed in Section 1.1.5. Each
of the other volumes contains a common, brief introduction to the overall LBNE Project, an
introduction to the individual L2 project and a detailed description of its conceptual design.

1.1.2 LBNE and the U.S. Neutrino-Physics Program

In its 2008 report, the Particle Physics Project Prioritization Panel (P5) recommended a
world-class neutrino-physics program as a core component of the U.S. particle physics pro-
gram [3]. Included in the report is the long-term vision of a large detector at the formerly
proposed Deep Underground Science and Engineering Laboratory (DUSEL) in Lead, S.D.
(now SURF), and a high-intensity neutrino source at Fermilab.

On January 8, 2010, the Department of Energy (DOE) approved the Mission Need for a new
long-baseline neutrino experiment that would enable this world-class program and firmly
establish the U.S. as the leader in neutrino science. The LBNE Project is designed to meet
this Mission Need.

Volume 4: The Liquid Argon Detector at the Far Site
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With the facilities provided by the LBNE Project, the LBNE Science Collaboration proposes
to mount a broad attack on the science of neutrinos with sensitivity to all known parameters
in a single experiment. The focus of the program will be the explicit demonstration of leptonic
CP violation, if it exists, by precisely measuring the asymmetric oscillations of muon-type
neutrinos and antineutrinos into electron-type neutrinos and antineutrinos.

The experiment will result in precise measurements of key three-flavor neutrino-oscillation
parameters over a very long baseline and a wide range of neutrino energies, in particular,
the CP-violating phase in the three-flavor framework and the mass ordering of neutrinos.
The unique features of the experiment — the long baseline, the broad-band beam, and the
high resolution of the detector — will enable the search for new physics that manifests itself
as deviations from the expected three-flavor neutrino-oscillation model. The scientific goals
and capabilities of LBNE are outlined in Volume 1 of this CDR and the 2010 Interim Report
of the Long-Baseline Neutrino Experiment Collaboration Physics Working Groups [4].

Siting the Far Detector deep underground, a scope opportunity that LBNE may seek to
pursue in the future with non-DOE funding, would provide opportunities for research in
additional areas of physics, such as nucleon decay and neutrino astrophysics, in particular,
studies of neutrino bursts from supernovae occurring in our galaxy.

1.1.3 LBNE Project Organization

The LBNE Project Office at Fermilab is headed by the Project Director and assisted by
the Project Manager, Project Scientist and Systems Engineer. Project Office support staff
include a Project Controls Manager and supporting staff, a Financial Manager, an Environ-
ment, Safety and Health (ES&H) Manager, a Computing Coordinator, Quality Assurance,
Procurement and Risk Managers, a documentation team and administrative support. The
Project organization is shown in Figure 1-1.

The Beamline, Liquid Argon Far Detector and Conventional Facilities L2 Projects are man-
aged by the Project Office at Fermilab, while the Near Detector Complex L2 Project is
managed by a Project Office at Los Alamos National Laboratory (LANL).

More information on Project Organization can be found in Volume 1 of this CDR. A full
description of LBNE Project management is contained in the LBNE Project Management
Plan [5].

1.1.4 Principal Parameters of the LBNE Project

The principal parameters of the major Project elements are given in Table 1-1.
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Figure 1-1: Organization chart for the LBNE Project (to WBS Level 3)
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Table 1-1: LBNE Principal Parameters

Project Element Parameter | Value

Near- to Far-Site Baseline 1,300 km

Primary Proton Beam Power 708 kW, upgradable to 2.3 MW
Protons on Target per Year 6.5 x 10%

Primary Beam Energy 60 — 120 GeV (tunable)
Neutrino Beam Type Horn-focused with decay volume
Neutrino Beam Energy Range 0.5 -5 GeV

Neutrino Beam Decay Pipe Diameter x Length || 4 m x 203.7 m

Far Detector Type LArTPC

Far Detector Active (Fiducial) Mass 13.5 (10) kton

Far Detector Depth 3 m overburden

1.1.5 Supporting Documents

Additional information related to the CDR is available in a set of supporting documents.
Detailed information on risk analysis and mitigation, value engineering, ES&H, costing,
project management and other topics not directly in the design scope can be found in these
documents, listed in Table 1-2. Each document is numbered and stored in LBNE’s docu-
ment database, accessible via a username/password combination provided by the Project.
Project documents stored in this database are made available to internal and external review
committees through Web sites developed to support individual reviews.

Table 1-2: LBNE CD-1 Documents

Title LBNE Doc Num-
ber(s)

Alternatives Analysis 4382

Case Study Report; Liquid Argon TPC Detector 3600

Configuration Management Plan 5452

DOE Acquisition Strategy for LBNE 5442

DOE Preliminary Project Execution Plan 5443

Integrated Environment, Safety and Health Manage- | 4514

ment Plan

LAr-FD Preliminary ODH Analysis 2478

LBNE Reconfiguration Final Report Linked from
LBNE web site
(Ibne.fnal.gov) un-
der “Reports and
Documents”

Global Science Objectives, Science Requirements and | 4772

Traceback Reports
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1.2

Muon-induced Background for Beam Neutrinos on the | 6159
Surface

Parameter Tables, Far Detector 3383
Preliminary Hazard Analysis Report 4513
Preliminary Security Vulnerability Assessment Report | 4826
Procurement Plan 5329
Project Management Plan 2453
Project Organization Chart 5449
Quality Assurance Plan 2449
Report on the Depth Requirements for a Massive De- | 0034
tector at Homestake

Requirements, Beamline 4835
Requirements, Far Detector 3747
Requirements, Far Site Conventional Facilities 4958
Requirements, Near Detectors 5579
Requirements, Near Site Conventional Facilities 5437
Risk Management Plan 5749
The Science and Strategy for a Long-Baseline Neutrino | 8625
Experiment Near Detector

Value Engineering Report 3082
Work Breakdown Structure (WBS) 4219

Introduction to the Liquid Argon Far Detector

1.2.1 Overview

The Far Detector conceptual design for LBNE is a liquid argon time projection chamber
(LArTPC). The basic components of this type of detector include a cryostat to contain the
liquid argon (LAr), a TPC detection mechanism immersed in the LAr, readout electronics
and a cryogenic system to keep the LAr temperature at 87 K and maintain the required
purity.

The LBNE Far Detector LArTPC, referred to as the LAr-FD, consists of two large cryostats
as shown in Figure 1-2, each of which holds a total of 9.4 kton of LAr. The active (instru-
mented) LAr mass of each is 6.7 kton and its fiducial mass, as defined for neutrino-oscillation
studies, is 5 kton.
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No‘a‘a‘l Time Projection
¢ Chamber

Figure 1-2: LAr-FD configuration. The beam enters from the east, placing Detector (cyrostat)
1 north of Detector 2.

A uniform electric field is created within the LArTPC volume between cathode planes and
anode wire planes. Charged particles passing through the TPC ionize electrons that drift to
the anode wire planes. The bias voltage is set on the anode plane wires so that ionization
electrons drift between the first several (induction) planes and are collected on the last (col-
lection) plane. Readout electronics amplify and continuously digitize the induced waveforms
on the sensing wires at 2 MHz, and transmit these data to the data acquisition (DAQ) system
for processing. The wire planes are oriented at different angles allowing a 3D reconstruction
of the particle trajectories. In addition to these basic components, a photon-detection system
provides a trigger for galactic supernova neutrino interactions.

The design of the LAr-FD has been developed and refined over the past three years. The
starting point was the ICARUS T600 system [6], and the process was informed and guided
by the experience with small LArTPCs in the U.S., particularly ArgoNeuT [7] and the
development of designs for MicroBooNE [8]. The LAr-FD concept is designed for assembly
from small, independent elements that can be repeated almost indefinitely in any dimension
to form the entire assembly within a large cryostat. Each of the standalone unit cells includes
an independent mechanical structure to support the elements it contains. To a large extent,
scaling from detector volumes containing anywhere from a few to several hundred such
elements is straightforward with small and predictable risk.

The LAr-FD will require 3 m of 2.7 g/cm? shielding material on top of, and on the sides of,
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the detector to provide as much as 300 m of 20-degree low-angle cosmic-ray muon shielding.
To accomplish this, the detector will be located in an excavated pit, nestled into a hillside.
The facilities for housing the detector are described in Volume 6 of this CDR.

1.2.2 Location and Layout

The proposed location of the LAr-FD on the SURF site is shown in Figure 1-3.

Figure 1-4 zooms in to show the proposed orientation of the installation with respect to
its surroundings, and Figure 1-5 zooms in further to show the proposed configuration of
the detector and ancillary buildings. The building and related conventional facilities are
described in Volume 6 of this CDR.

The LAr-FD Detector Hall will be erected above two side-by-side pits that will be excavated
in the surface rock near the Oro Hondo fan site. The long axis of the detector modules will
point towards Fermilab, parallel to and in line with the neutrino beamline. The below-grade
rectangular pits inside of which the cryostats fit, will have dimensions of 18 m wide by
18 m high by 30 m long. The pits will be separated by a 3 m wide concrete septum. A roof
support wall, constructed above the concrete septum, will be perforated with passageways to
provide easy access and ventilation throughout the building. The configuration is illustrated
in Figures 1-6 and 1-7. Primary egress will be through the truck entrances and stairways.
Secondary egress will be provided by a personnel passageway at the near (east) end of the
building.

Minimal head-height is required above the cryostats except at a high bay at the far (west)
end where TPC components will be rigged into place through the 2-m x 4-m hatches in
each cryostat. A 15-ton crane will be provided in the high bay. Two truck entrances will be
provided at each end of the high bay to facilitate parallel construction and installation in
the cryostats.

The nitrogen refrigerator and cryogenic storage tanks will be located outside. Cryogenic
supply and return lines will be routed through one of the truck entrances or through a
dedicated pipe chase.

1.2.3 Cryostat Construction

The cryostat construction uses commercial stainless-steel membrane technology engineered
and produced by industry. These vessels are widely deployed in liquefied natural gas (LNG)
tanker ships and tanks, and are typically manufactured in sizes much larger than that of the
LAr-FD. This is an inherently clean technology, in that the primary membrane panels are
constructed of polished SS, with passive insulation.

Volume 4: The Liquid Argon Detector at the Far Site
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Figure 1-3: Location of LAr-FD on the SURF site in Lead, SD.
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Figure 1-4: LAr-FD configuration with respect to the site (North points up)
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Figure 1-5: LAr-FD configuration and ancillary buildings (North points up)
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The LAr-FD cryostat reference design was selected on the recommendation of the experienced
engineering consultants from ARUP USA, Inc. [9] after consideration of an alternative design
that uses segmented, internally self-supporting, evacuable, modular cryostats. Evacuation, in
particular, appears not to be necessary; in September 2011, the Fermilab Liquid Argon Purity
Demonstrator (LAPD) achieved purity levels of less than 100 ppt oxygen-equivalent, using
the method that is planned for use in the LAr-FD (the method is described in Section 8.3.3).
This confirms that the method works, obviating the risk to LBNE that an evacuable vessel
will be required. Operation of a 35-ton prototype using membrane-cryostat technology will
provide a further demonstration.

The LAr-FD membrane cryostats are hermetically sealed containers supported by the sur-
rounding rock. This “in-ground” configuration offers access only from the top and protects
against possible cryogen leaks out of the tank. The side walls consist of a series of mem-
branes, foam insulation and reinforced concrete poured against the shotcrete covered rock.
The inner (primary) membrane liner, made of stainless steel, is corrugated to provide strain
relief from temperature-related expansion and contraction. The basic components of the
membrane tank are illustrated in Figure 1-8.

1.2.4 Cryogenic Systems

The LAr must be initially transferred to the cryostats and must be kept cold, pure and
circulating smoothly during operations in order to maintain a sufficiently long drift lifetime
for the ionization electrons. The major cryogenic systems used to perform these functions
include the cryogen supply for cool-down and fill, gas filtration, argon condensing, liquid
filtration and circulation and argon purity analysis.

The overall cryogenic system layout and location is intended to optimize safety and efficiency.
It is designed to minimize:

the risk of personnel injury to any Oxygen Deficiency Hazard (ODH)

heat ingress to the cryogenic system

e the volume of the argon system external to the cryostat and hence the potential for
argon escape or contamination

and to provide safe access to refrigeration equipment that requires periodic maintenance

The re-condensers and purifiers will be located in the Cryogenic Equipment Building. A
50-m3 LAr receiving dewar and a 50-m® LN dewar will be located on an adjacent pad.
Three liquid nitrogen (LN) refrigerators (two operating and one spare) will provide a cooling
capacity of 165 kW.

Volume 4: The Liquid Argon Detector at the Far Site
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Figure 1-8: Composite system as installed for the LAr-FD reference design
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The required flow rate of liquid argon to be sent for purification is expected to decrease over
time as impurities are slowly removed from the system . The initial maximum flow rate will
be 51 m3/hr (224 gpm) from each cryostat, resulting in a complete volume turnover every
five days. Longer term, the rate will decrease to 25 m?3/hr with a turnover time of 10 days.
As point of comparison, ICARUS T600 has a maximum turnover rate of eight to ten days.

1.2.5 LAr Purification

The purification of LAr is accomplished with standard industrial equipment, using molecular
sieves and chemically reducing materials, which is scalable within the contemplated range
to accommodate the estimated irreducible material-outgassing from warm materials in the
ullage (the vapor space above the liquid argon).

1.2.6 Time Projection Chamber

The Time Projection Chamber (TPC) is the active detection element of the LAr-FD. The
construction concept is shown schematically in Figure 1-9. The TPC is located inside the
cryostat vessel and is completely submerged in LAr at 87 K. Its active volume is 14 m high,
14 m wide and 25 m long in the beam direction. It has four rows of Cathode Plane Assemblies
(CPA) planes interleaved with three rows of Anode Plane Assemblies (APA) planes that are
oriented vertically, parallel to the beamline, with the electric field applied perpendicular to
the planes. The maximum electron-drift distance between a cathode and an adjacent anode
is 2.3 m. Both the cathode and anode plane assemblies are 2.5 m wide and 7 m high. Two
7-m modules (either APA or CPA) stack vertically to instrument the 14-m active depth. In
each row, 10 such stacks are placed edge-to-edge along the beam direction, forming the 25-m
active length of the detector. Each cryostat houses a total of 60 APAs and 80 CPAs. A “field
cage” surrounds the top and ends of the detector to ensure uniformity of the electric field.
The field cage is assembled from panels of FR-4 sheets with parallel copper strips connected
to resistive divider networks.

Each APA has three wire planes that are connected to readout electronics; two induction
planes (labeled U and V in Figure 1-9) and one collection plane (X). A fourth wire plane,
grid plane (G), is held at a bias voltage but is not instrumented with readout electronics.
The grid plane improves the signal-to-noise ratio on the U plane and provides electrostatic
discharge protection for the readout electronics.

1.2.7 Electronics, Readout and Data Acquisition

Requirements for low noise and for extreme purity of the LAr motivate locating the front-
end electronics in the LAr (hence “cold electronics”). By placing the electronics close to
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the anode wires the capacitance is minimized thereby minimizing the electronic noise. In-
cryostat electronics also has the advantage of reducing the number of cables and feedthroughs
needed, thereby reducing the resulting Ar contamination. The use of CMOS electronics in
this application is particularly attractive since the series noise of this process has a noise
minimum at 87 K. The large number of readout channels required to instrument the LAr-FD
TPCs motivates the use of CMOS ASICs. Signal zero-suppression and multiplexing will be
implemented in the ASIC, minimizing the number of cables and feedthroughs in the ullage
gas, and therefore reducing contamination from cable outgassing. Figure 1-10 shows the
conceptual architecture of a front-end electronics design that meets the requirements for
LAr-FD. The entire electronics chain is immersed in the LAr.

All signal feedthroughs will be placed at the top of the cryostat, where they are easily
installed, are always accessible, are at low hydrostatic pressure and pose no risk of LAr
leakage. The cold electronic system will include digitization, buffering, and some level of
digital output multiplexing. Output data links will include redundancy to eliminate the
effect of any single-point failure.

Feedthrough

Cryostat (x2)
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Low Noise Section Digital Section
Tp~1us

| » b ADC u Data Processing ASIC
%r Clock& |
iy
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- LLH
! utpu
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Data Output Board

Clock &
Control

Output
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Figure 1-10: Conceptual front-end electronics architecture

1.2.8 Photon-Detection System

Identification of the different possible charged-particle types depends on accurate measure-
ments of ionization along tracks. This requires accurate determination of the time of inter-
action, or event time, t., which leads to the absolute location of the event along the drift
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axis, and allows the determination of (Jy, the true ionization charge.

For non-accelerator physics events, t, is not known a priori. However, LAr is an excellent
scintillator, generating of order 10* 128-nm photons per MeV of deposited energy. Detection
of scintillation photons provides a prompt signal that allows unambiguous location of particle
positions along the drift axis.

Photon detection is also important for mitigating the effects of the significant cosmic ray
backgrounds expected for a surface detector.

The photon-detection system consists of acrylic light-guides that lead to small photomulti-
plier tubes (PMTs), as shown in Figure 1-11. Approximately 5% of the converted photons
incident on a light guide are captured within it and travel to the PMT. A wavelength-
shifting coating on the light guides efficiently converts the scintillation photon wavelength
from 128 nm to 428 nm where the PMT is most sensitive. The fast PMT signals will be
routed out of the cryostat to standard readout electronics.

Hamamatsu

gem | | . Res20 PMT

200 cm 25cm4
e

*

SS frame adiabatic light guide
bent through 90°

Figure 1-11: Light Guide Paddle: four adiabatic light guides bent onto a single R8520-MOD
PMT.

Ten light-guide and PMT assemblies, or “paddles”, will be installed within each APA frame
prior to wire winding. The PMT signals will be used as a software “trigger” in the DAQ
to define the event time, t., for non-accelerator events. This system provides a t. signal
throughout the entire detector in contrast to a system similar to that used in MicroBooNE
and ICARUS, where light detection elements are restricted to locations outside the detector
volume.

1.2.9 Detector Installation and Operation

Detector components will be shipped in sealed containers to the Far Site by truck and
delivered to the building. The containers will be moved to a clean area over the hatches
where components will be lowered through the access hatch into each cryostat.

LBNE Conceptual Design Report



1-20 Chapter 1: Introduction

The construction of the two cryostats and the installation and commissioning activities will
be staged such that both TPCs can be tested cold while one cryostat still remains available
as a potential LAr storage vessel. The LAr in one cryostat can be transferred to the other,
and back again, if necessary, until all the tests complete successfully. Once both TPCs are
known to work properly at LAr temperature, the second fill will take place.

To protect the membrane on the floor of the cryostat during TPC installation, a temporary
floor will be installed. After each pair of APAs is installed, they will be connected to the
DAQ system and the wire integrity tested. All wires on previously installed APA pairs will
also be tested. The wire integrity test will be performed during cryostat cool-down as well. A
relatively slow cool-down rate will ensure that the temperature-induced stresses in the APA
frames and wires are kept well below the level experienced during testing.

An installation and integration detector mock-up will be constructed at Fermilab to con-
firm that interfaces between detector systems are well defined and to refine the installation
procedures.

1.3 Principal Parameters
The principal parameters of the LAr-FD are given in Table 1-3.

Table 1-3: LAr-FD Principal Parameters

Parameter H Value ‘
Total Active (Fiducial) Mass 13.5 (10) kton
Number of Detector Modules (Cryostats) || 2
Drift Cell Configuration within Module 3 wide x 2 high x 10 long drift

cells

Drift Cell Dimensions 2 x 2.3 m wide (drift) x 7 m high
x 2.5 m long

Detector Module Dimensions 13.9 m wide x 14 m high x 25.3 m
long

Anode Wire Spacing ~5 mm

Wire Planes (Orientation from vertical) Grid (0°), Induction 1 (45°), Induc-
tion 2 (-45°), Collection (0°)

Drift Electric Field 500 V/cm

Maximum Drift Time 1.4 ms
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1.3.1 Design Considerations

TPCs operated to date have been constructed with an anode wire spacing in the range of
3 mm (ICARUS) to 4.8 mm (Fermilab cosmic-ray stand). The amount of ionization charge
collected on the wires increases with larger wire spacing, resulting in a better signal-to-noise
ratio without serious consequences (the radiation length of LAr is ~ 30 times larger than
the typical wire spacing). The electron-7° separation efficiency of a TPC with 5-mm wire
spacing is only a few percent lower than one with 3-mm wire spacing. It is also clear that a
TPC with larger wire spacing requires fewer wires and readout channels, resulting in lower
cost.

Only two wire planes are required to reconstruct events in three dimensions, however three
wire planes will be used to provide N+1 redundancy. The third will improve the pattern-
recognition efficiency for a subset of multi-track events in which trajectories can overlap in
two views. The collection-plane wires are most commonly used for calorimetric reconstruction
and are oriented vertically (0°) to minimize both the wire length and the electronics noise.

A study of wire orientation has shown that for a TPC with three instrumented wire planes,
the optimum orientation of the induction plane wires should be between 4+40° and +60°
when the collection plane wires are at 0° [10]. The ideal orientation for the more isotropic
low-energy events, e.g., supernova-neutrino interactions, is £60°. The selected induction-
plane wire orientation of £45° has better position resolution in the vertical direction than
+30° and has shorter wires compared to a wire orientation of +£60°. The induction plane
wires are wrapped around the APA frames so that the readout electronics can be located on
the top or bottom of the TPC. As a result, it is natural to arrange the APAs vertically in a
two-high confugration.

Access to the top of the cryostat is required to install and connect cabling. Therefore, risk of
personnel injury and detector damage, both of which increase with height, along with optimal
cryostat shape form the primary considerations for the detector height, 14 m. The height
of the APA has been chosen, accordingly, to be 7 m, resulting in 7-m-long collection-plane
wires and 10-m-long induction plane wires.

The 2.5 m width of the APA was chosen to facilitate construction and to allow standard,
over-the-road transport.

The choice of cryostat width is based on the desired cryostat shape and building roof span.
From a cryogenics standpoint, the ideal cryostat for a modular TPC would be a cube since
membrane-cryostat capital and operating costs scale linearly with the surface area. Due to
the resulting detector height, a cube shape is not ideal for building construction however for
cryostats of this size.

A drift field of 500 V/cm was chosen based on experience from similar detectors such as

LBNE Conceptual Design Report



1-22 Chapter 1: Introduction

ICARUS, ArgoNeuT and the Fermilab cosmic-ray test stand. At this electric field, ~ 30%
of the ionization electrons produced by the passage of a minimum ionizing particle (MIP)
recombine and create scintillation light that provides a fast trigger. The remaining ionization
electrons drift to the APA and produce wire-plane signals. The TPC could function at higher
or lower drift fields but the relative yields of scintillation light and ionization electrons would
change. The use of a higher drift field would require more care in the design of the high-
voltage systems. The electron drift velocity is 1.6 mm/pus at 500 V/cm. For a maximum drift
distance of 2.3 m and a drift field of 500 V/cm, the required voltage on the cathode plane
is 114 kV. This is within the range of commercially available high-voltage cables and within
the range of current designs for cryogenic feedthroughs.

The maximum drift cell length of 2.3 m was chosen based on experience from other detectors
and on the need to mitigate the effects of space charge due to the high flux of cosmic rays.
The required minimum signal-to-noise ratio of 10:1 ensures that the tracking efficiency will
be 100% throughout the entire drift cell. The TPC must be capable of detecting the smallest
signal (1 MeV) produced in interactions that LBNE will study. This situation occurs when
a MIP travels parallel to a wire plane and perpendicular to the orientation of the wires
in the plane. A MIP loses 2.1 MeV of energy in each cm of travel, producing ~ 40,000
ionization electrons along every 5 mm section of the track. About 28,000 electrons escape
recombination and, ignoring the effects of LAr purity and diffusion, would all drift to one
collection plane wire. The capacitance due to the maximum-length 10-m wire is 226 pF
resulting in an equivalent noise charge (ENC) of 530 electrons in the CMOS amplifiers. The
signal-to-noise ratio would therefore be 53:1 if all of the ionization electrons arrived at the
wire.

Ionization electrons will be lost due to impurities in the LAr. The fraction that survive
passage to the anode planes is e /7, where t is the drift time and 7 is the drift-electron
lifetime. The maximum drift time is the maximum drift length divided by 1.6 mm/us which
equals 1.4 ms for LBNE. The ICARUS detector has achieved a drift electron lifetime of 6
— 7 ms. The Materials Test Stand (described in Section 8.3.1) regularly achieves a drift-
electron lifetime of 8 — 10 ms. The Fermilab Liquid Argon Purity Demonstrator achieved a
liftime of > 3 ms during initial tests. Based on this experience, and by careful selection of
materials in the ullage, a drift-electron lifetime at least as good as ICARUS is expected. The
signal-to-noise ratio would be 36:1 for a drift electron lifetime of 6 ms. A minimum lifetime
of 0.9 ms is required to meet the 10:1 signal-to-noise ratio requirement.

The cloud of drifting ionization electrons will spread out in space due to the effects of
diffusion. The maximum transverse RM S width of the electron cloud is 2 mm for the chosen
drift distance and drift field, well matched to both the chosen wire spacing and electronics
sampling rate.
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1.4 Detector Development Program

The feasibility of the LAr-FD as a detector has been demonstrated by a series of tests, pro-
totypes and smaller experiments, and most impressively by the current state of the ICARUS
experiment currently taking data at Gran Sasso. Many of the development activities related
to drift lifetime, cold electronics, mechanical design, analysis tools and cryostat construc-
tion in the U.S. are described in the Integrated Plan for LArTPC Neutrino Detectors in
the US [11]. This program includes non-LBNE activities such as the Fermilab Materials
Test Stand, Fermilab electronics test stand, LAPD, photon detection, ArgoNeuT and Mi-
croBooNE as well as LBNE activities such as the 35-ton prototype. The development plan
is described in detail in Chapter 8.

1.5 Participants and Organization

The design for the LBNE Far Detector is being carried out by an LBNE L2 project team, with
participants from Fermilab and Brookhaven National Laboratory as well as participating
LBNE institutions, and has included an engineering design firm, Arup USA, Inc., to assist
with cryostat and cryogenic-plant design. At the time of CD-1, the L2 manager for the
LAr-FD is from BNL. This firm also provided valuable cost-estimating expertise.The South
Dakota Science and Technology Authority (SDSTA) owns and manages the SURF site, which
is the location planned for detector construction.

The LBNE Far Detector development effort is managed by the Work Breakdown Structure
(WBS) Level 2 Manager for the Far Detector L2 Project. The supporting team includes
a WBS Level 3 Manager for each of its component systems: Cryogenics & Cryostat, Time
Projection Chamber (TPC) and Electronics, Data Acquisition (DAQ), Installation & Com-
missioning and Photon Detector. Figure 1-12 shows an organization chart down to Level 4
(L4).

The Conventional Facilities Level 3 Far Site Manager is the LBNE Project liaison with the
LAr-FD L2 Project to ensure the detector requirements are met; this person is responsible
for all LBNE scope at the Far Site. Management of SURF and the organizational relationship
between it and the LBNE Project and Fermilab are described in the SDSTA-Fermilab-LBNL
Memorandum of Understanding (MOU) [12] and the LBNE Project Management Plan [5].
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2 Cryogenics System and Cryostat
(WBS 130.05.02)

The scope of the Cryostat and Cryogenics subsystem includes the design, procurement,
fabrication, testing, delivery and installation oversight of (a) a cryostat to contain the liquid
argon (LAr) and the TPC, and (b) a comprehensive cryogenics system that meet the required
performance for acquiring, maintaining and purifying the LAr in the detector. This chapter
describes a reference design for these interdependent detector elements.

The scope of the reference-design membrane cryostat encompasses the following components:

Two 5-kton (fiducial mass) cryostats for a LAr-FD

LAr tanker truck receiving facilities

Transfer system to deliver LAr to the detector cryostats

Boil-off gas reliquefaction equipment

LAr-purification facilities

Cryostat-purge facilities

LAr transfer equipment

2.1 Introduction

The conceptual reference design for the LAr-FD specifies two rectangular vessels each mea-
suring 15.6 m in width, 16.0 m in height and 28.6 m in length, and containing a total mass
of 9.4 kton of LAr, as illustrated in Figure 1-2.
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2.1.1 Cryostat Design

A membrane cryostat design commonly used for liquid natural gas (LNG) storage and trans-
port tanker ships (Figure 2—-1) will be used. A membrane vessel uses a stainless-steel liner to
contain the liquid cryogen. The pressure loading of the liquid cryogen is transmitted through
rigid foam insulation to the surrounding rock, which provides external support for the liner.
The membrane liner is corrugated to provide strain relief resulting from temperature-related
expansion and contraction (Figure 2-2).

Figure 2-1: Interior of a LNG ship tanker. The tank shown is 24 m high by 35 m wide with
interior grid-like corrugations on a 0.34-m pitch. By comparison, a single LAr-FD cryostat is 16 m
high by 15.6 m wide.
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